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Theoretical Foundations of Genetic Algorithms - Schema Theory

Terminology
Length of bitstrings is m

Individual’s chromosome: {0, 1}m
Schema - a template allowing exploration of similarities among
individuals (binary strings)
A schema consists of 0’s, 1’s and *’s (don’t care symbol)
One particular schema represents all strings (a hyperplane or subset of
the search space) which match it on all positions other than ‘*’
Every schema matches exactly 2r strings, where r is the number of *’s
Each string of length m is matched by 2m schemata
For length m there are 3m possible schemata
The order of schema S (denoted by o(S)) is the number of fixed
positions (non-don′t care positions) in S (= m − r)
The defining length of schema S (denoted by δ(S)) is the distance
between the first and the last fixed string positions (i.e., the number
of crossover points); it defines the compactness of information
contained in a schema
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Theoretical Foundations of Genetic Algorithms - Schema Theory

The number of strings in a population at time t matched by schema
S is denoted by ξ(S, t)

Fitness of individual vi : eval(vi )
The fitness of a schema at time t, eval(S, t), is defined as the average
fitness of all strings in the population matched by the schema S
Population consists of strings {v1, · · · , vpopsize}
Given p strings {vi1 , · · · , vip} in population matched by schema Si ,
then:

eval(Si , t) =
p∑

j=1
eval(vij )/p (1)

Total fitness of population F (t) =
∑popsize

i=1 eval(vi )
Assume generational model with fitness proportional (roulette wheel)
selection
Single string selection chance at time t: eval(vi )/F (t)
Selection chance for average string matched by schema S:
eval(S, t)/F (t)
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Theoretical Foundations of Genetic Algorithms - Schema Theory

Combining the above we get:
E [ξ(S, t + 1)] = ξ(S, t) · popsize · eval(S, t)/F (t) (2)

Average population fitness F (t) = F (t)/popsize
Reproductive schema growth equation:

E [ξ(S, t + 1)] = ξ(S, t) · eval(S, t)/F (t) (3)

If schema S remains above average by ε%, in other words
eval(S, t) = (1 + ε) · F (t), then we can make the following derivation
of the geometric progression equation:

E [ξ(S, t + 1)] = ξ(S, t) · (1 + ε) · F (t)/F (t)
ξ(S, t) · (1 + ε)
ξ(S, t − 1) · (1 + ε)2

ξ(S, t − i) · (1 + ε)i+1

ξ(S, 0) · (1 + ε)t+1 (4)

Daniel Tauritz, PhD EA Theory Notes November 16, 2020 4 / 8



Theoretical Foundations of Genetic Algorithms - Schema Theory

Combining the above we get:
E [ξ(S, t + 1)] = ξ(S, t) · popsize · eval(S, t)/F (t) (2)

Average population fitness F (t) = F (t)/popsize

Reproductive schema growth equation:
E [ξ(S, t + 1)] = ξ(S, t) · eval(S, t)/F (t) (3)

If schema S remains above average by ε%, in other words
eval(S, t) = (1 + ε) · F (t), then we can make the following derivation
of the geometric progression equation:

E [ξ(S, t + 1)] = ξ(S, t) · (1 + ε) · F (t)/F (t)
ξ(S, t) · (1 + ε)
ξ(S, t − 1) · (1 + ε)2

ξ(S, t − i) · (1 + ε)i+1

ξ(S, 0) · (1 + ε)t+1 (4)

Daniel Tauritz, PhD EA Theory Notes November 16, 2020 4 / 8



Theoretical Foundations of Genetic Algorithms - Schema Theory

Combining the above we get:
E [ξ(S, t + 1)] = ξ(S, t) · popsize · eval(S, t)/F (t) (2)

Average population fitness F (t) = F (t)/popsize
Reproductive schema growth equation:

E [ξ(S, t + 1)] = ξ(S, t) · eval(S, t)/F (t) (3)

If schema S remains above average by ε%, in other words
eval(S, t) = (1 + ε) · F (t), then we can make the following derivation
of the geometric progression equation:

E [ξ(S, t + 1)] = ξ(S, t) · (1 + ε) · F (t)/F (t)
ξ(S, t) · (1 + ε)
ξ(S, t − 1) · (1 + ε)2

ξ(S, t − i) · (1 + ε)i+1

ξ(S, 0) · (1 + ε)t+1 (4)

Daniel Tauritz, PhD EA Theory Notes November 16, 2020 4 / 8



Theoretical Foundations of Genetic Algorithms - Schema Theory

Combining the above we get:
E [ξ(S, t + 1)] = ξ(S, t) · popsize · eval(S, t)/F (t) (2)

Average population fitness F (t) = F (t)/popsize
Reproductive schema growth equation:

E [ξ(S, t + 1)] = ξ(S, t) · eval(S, t)/F (t) (3)

If schema S remains above average by ε%, in other words
eval(S, t) = (1 + ε) · F (t), then we can make the following derivation
of the geometric progression equation:

E [ξ(S, t + 1)] = ξ(S, t) · (1 + ε) · F (t)/F (t)
ξ(S, t) · (1 + ε)
ξ(S, t − 1) · (1 + ε)2

ξ(S, t − i) · (1 + ε)i+1

ξ(S, 0) · (1 + ε)t+1 (4)
Daniel Tauritz, PhD EA Theory Notes November 16, 2020 4 / 8



Theoretical Foundations of Genetic Algorithms - Schema Theory

Now assume 1-point crossover with crossover chance pc ; a crossover
point is selected uniformly among m − 1 possible locations

Probability of schema destruction:

pd (S) ≤ pc ·
δ(S)

m − 1 (5)

Consequently, probability of schema survival:

ps(S) ≥ 1− pc ·
δ(S)

m − 1 (6)

New reproductive schema growth equation:

E [ξ(S, t + 1)] ≥ ξ(S, t) · eval(S, t)
F (t)

[
1− pc ·

δ(S)
m − 1

]
(7)

Finally, add mutation with bit mutation chance pm; single bit survival
is 1− pm
Schema survival ps(S) = (1− pm)o(S)
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Theoretical Foundations of Genetic Algorithms - Schema Theory

Since pm � 1, schema survival can be approximated as
ps(S) ≈ 1− o(S) · pm

Combined reproductive schema growth equation:

E [ξ(S, t + 1)] ≥

ξ(S, t) · eval(S, t)
F (t)

[
1− pc ·

δ(S)
m − 1 − o(S) · pm

]
(8)

Schema Theorem: Short, low-order, above-average schemata receive
exponentially increasing trials in subsequent generations of a genetic
algorithm
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Theoretical Foundations of Genetic Algorithms - Schema Theory

Building Block Hypothesis: A genetic algorithm seeks near-optimal
performance through the juxtaposition of short, low-order,
high-performance schemata, called the building blocks

Consequence: the manner in which we encode a problem is critical for
the performance of a GA - it should satisfy the idea of short building
blocks
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Theoretical Foundations of Genetic Algorithms - Schema Theory

Example Exam Question
Given the following bit strings v1 through v5 and scheme S
v1 = (01101110101001) fitness(v1) = 0.8
v2 = (10110010011001) fitness(v2) = 0.1
v3 = (00001010011010) fitness(v3) = 1.0
v4 = (01001110111001) fitness(v4) = 1.2
v5 = (01001011100011) fitness(v5) = 1.9
S = (01**11101*100*)

Compute the order of S: 10
Compute the defining length of S: 13-1=12
Compute the fitness of S: 0.8+1.2

2 = 1.0
Do you expect the number of strings matching S to increase or
decrease in subsequent generations?
Average pop fitness: 0.8+0.1+1.0+1.2+1.9

5 = 1.0
Decrease, because fitness of S is equal to the average pop fitness and
S has a high-order and defining length so large destruction chance.
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