
COMP 5660/6660 - Evolutionary Computing - Lecture
Slides

Daniel Tauritz, PhD

Auburn University

September 9, 2024

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 1 / 17



Computational Problem Solving

Step 1: build abstract/computational model of the real-world
Step 2: solve computationally in abstract model

“Everything Should Be Made as Simple as Possible, But Not
Simpler”1

Step 3: map solution back to real-world

1https://quoteinvestigator.com/2011/05/13/einstein-simple/
Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 2 / 17

https://quoteinvestigator.com/2011/05/13/einstein-simple/


Computational Problem Solving

Step 1: build abstract/computational model of the real-world
Step 2: solve computationally in abstract model
“Everything Should Be Made as Simple as Possible, But Not
Simpler”1

Step 3: map solution back to real-world

1https://quoteinvestigator.com/2011/05/13/einstein-simple/
Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 2 / 17

https://quoteinvestigator.com/2011/05/13/einstein-simple/


Computational Problem Solving

Step 1: build abstract/computational model of the real-world
Step 2: solve computationally in abstract model
“Everything Should Be Made as Simple as Possible, But Not
Simpler”1

Step 3: map solution back to real-world

1https://quoteinvestigator.com/2011/05/13/einstein-simple/
Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 2 / 17

https://quoteinvestigator.com/2011/05/13/einstein-simple/


Computational Problem Classes

Decision problems
Optimization problems
Modeling (aka system identification) problems
Simulation problems
Search problems

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 3 / 17



Search Terminology

Many computational problems can be formulated as
generate-and-test search problems
A search space contains the set of all possible solutions

A search space generator is complete if it can generate the entire
search space
An objective function tests the quality of a solution
Graduated solution quality
Stochastic search of adaptive solution landscape
Local versus global optima
Unimodal versus multimodal problems

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 4 / 17



Search Terminology

Many computational problems can be formulated as
generate-and-test search problems
A search space contains the set of all possible solutions
A search space generator is complete if it can generate the entire
search space

An objective function tests the quality of a solution
Graduated solution quality
Stochastic search of adaptive solution landscape
Local versus global optima
Unimodal versus multimodal problems

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 4 / 17



Search Terminology

Many computational problems can be formulated as
generate-and-test search problems
A search space contains the set of all possible solutions
A search space generator is complete if it can generate the entire
search space
An objective function tests the quality of a solution

Graduated solution quality
Stochastic search of adaptive solution landscape
Local versus global optima
Unimodal versus multimodal problems

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 4 / 17



Search Terminology

Many computational problems can be formulated as
generate-and-test search problems
A search space contains the set of all possible solutions
A search space generator is complete if it can generate the entire
search space
An objective function tests the quality of a solution
Graduated solution quality

Stochastic search of adaptive solution landscape
Local versus global optima
Unimodal versus multimodal problems

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 4 / 17



Search Terminology

Many computational problems can be formulated as
generate-and-test search problems
A search space contains the set of all possible solutions
A search space generator is complete if it can generate the entire
search space
An objective function tests the quality of a solution
Graduated solution quality
Stochastic search of adaptive solution landscape

Local versus global optima
Unimodal versus multimodal problems

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 4 / 17



Search Terminology

Many computational problems can be formulated as
generate-and-test search problems
A search space contains the set of all possible solutions
A search space generator is complete if it can generate the entire
search space
An objective function tests the quality of a solution
Graduated solution quality
Stochastic search of adaptive solution landscape
Local versus global optima

Unimodal versus multimodal problems

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 4 / 17



Search Terminology

Many computational problems can be formulated as
generate-and-test search problems
A search space contains the set of all possible solutions
A search space generator is complete if it can generate the entire
search space
An objective function tests the quality of a solution
Graduated solution quality
Stochastic search of adaptive solution landscape
Local versus global optima
Unimodal versus multimodal problems

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 4 / 17



Search Terminology

Many computational problems can be formulated as
generate-and-test search problems
A search space contains the set of all possible solutions
A search space generator is complete if it can generate the entire
search space
An objective function tests the quality of a solution
Graduated solution quality
Stochastic search of adaptive solution landscape
Local versus global optima
Unimodal versus multimodal problems

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 4 / 17



Algorithmic Toolbox

A heuristic is a problem-dependent rule-of-thumb
A meta-heuristic is a general heuristic to determine the sampling
order over a search space with the goal to find a near-optimal solution
(or set of solutions)

A hyper-heuristic is a meta-heuristic for a space of programs
A Black-Box Search Algorithm (BBSA) is a meta-heuristic which
iteratively generates trial solutions employing solely the information
gained from previous trial solutions, but no explicit problem knowledge
Evolutionary Algorithms (EAs) can be described as a class of
stochastic, population-based BBSAs inspired by Evolution Theory,
Genetics, and Population Dynamics

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 5 / 17



Algorithmic Toolbox

A heuristic is a problem-dependent rule-of-thumb
A meta-heuristic is a general heuristic to determine the sampling
order over a search space with the goal to find a near-optimal solution
(or set of solutions)
A hyper-heuristic is a meta-heuristic for a space of programs
A Black-Box Search Algorithm (BBSA) is a meta-heuristic which
iteratively generates trial solutions employing solely the information
gained from previous trial solutions, but no explicit problem knowledge

Evolutionary Algorithms (EAs) can be described as a class of
stochastic, population-based BBSAs inspired by Evolution Theory,
Genetics, and Population Dynamics

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 5 / 17



Algorithmic Toolbox

A heuristic is a problem-dependent rule-of-thumb
A meta-heuristic is a general heuristic to determine the sampling
order over a search space with the goal to find a near-optimal solution
(or set of solutions)
A hyper-heuristic is a meta-heuristic for a space of programs
A Black-Box Search Algorithm (BBSA) is a meta-heuristic which
iteratively generates trial solutions employing solely the information
gained from previous trial solutions, but no explicit problem knowledge
Evolutionary Algorithms (EAs) can be described as a class of
stochastic, population-based BBSAs inspired by Evolution Theory,
Genetics, and Population Dynamics

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 5 / 17



Algorithmic Toolbox

A heuristic is a problem-dependent rule-of-thumb
A meta-heuristic is a general heuristic to determine the sampling
order over a search space with the goal to find a near-optimal solution
(or set of solutions)
A hyper-heuristic is a meta-heuristic for a space of programs
A Black-Box Search Algorithm (BBSA) is a meta-heuristic which
iteratively generates trial solutions employing solely the information
gained from previous trial solutions, but no explicit problem knowledge
Evolutionary Algorithms (EAs) can be described as a class of
stochastic, population-based BBSAs inspired by Evolution Theory,
Genetics, and Population Dynamics

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 5 / 17



EA Pros

More general purpose than traditional optimization algorithms (less
problem specific knowledge required)
Ability to solve “difficult” problems

Solution availability during computation
Robustness
Inherent parallelism

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 6 / 17



EA Pros

More general purpose than traditional optimization algorithms (less
problem specific knowledge required)
Ability to solve “difficult” problems
Solution availability during computation
Robustness
Inherent parallelism

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 6 / 17



EA Pros

More general purpose than traditional optimization algorithms (less
problem specific knowledge required)
Ability to solve “difficult” problems
Solution availability during computation
Robustness
Inherent parallelism

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 6 / 17



EA Cons

Fitness function and genetic operators often not obvious
Premature convergence
Computationally intensive
Difficult parameter optimization

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 7 / 17



Biological Metaphors - Darwinian Evolution

Macroscopic view of evolution
Natural selection
Survival of the fittest
Random variation
Genetic drift

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 8 / 17



Biological Metaphors - Mendelian Genetics

Genotype - functional unit of inheritance
Phenotype - expression of genotype

Pleiotropy - one gene affects multiple phenotypic traits
Polygeny - one phenotypic trait is affected by multiple genes
Chromosomes - haploid versus diploid
Locus/Loci - gene location/locations on the genome/chromosome
Alleles - variant forms of a gene

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 9 / 17



Biological Metaphors - Mendelian Genetics

Genotype - functional unit of inheritance
Phenotype - expression of genotype
Pleiotropy - one gene affects multiple phenotypic traits

Polygeny - one phenotypic trait is affected by multiple genes
Chromosomes - haploid versus diploid
Locus/Loci - gene location/locations on the genome/chromosome
Alleles - variant forms of a gene

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 9 / 17



Biological Metaphors - Mendelian Genetics

Genotype - functional unit of inheritance
Phenotype - expression of genotype
Pleiotropy - one gene affects multiple phenotypic traits
Polygeny - one phenotypic trait is affected by multiple genes

Chromosomes - haploid versus diploid
Locus/Loci - gene location/locations on the genome/chromosome
Alleles - variant forms of a gene

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 9 / 17



Biological Metaphors - Mendelian Genetics

Genotype - functional unit of inheritance
Phenotype - expression of genotype
Pleiotropy - one gene affects multiple phenotypic traits
Polygeny - one phenotypic trait is affected by multiple genes
Chromosomes - haploid versus diploid

Locus/Loci - gene location/locations on the genome/chromosome
Alleles - variant forms of a gene

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 9 / 17



Biological Metaphors - Mendelian Genetics

Genotype - functional unit of inheritance
Phenotype - expression of genotype
Pleiotropy - one gene affects multiple phenotypic traits
Polygeny - one phenotypic trait is affected by multiple genes
Chromosomes - haploid versus diploid
Locus/Loci - gene location/locations on the genome/chromosome

Alleles - variant forms of a gene

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 9 / 17



Biological Metaphors - Mendelian Genetics

Genotype - functional unit of inheritance
Phenotype - expression of genotype
Pleiotropy - one gene affects multiple phenotypic traits
Polygeny - one phenotypic trait is affected by multiple genes
Chromosomes - haploid versus diploid
Locus/Loci - gene location/locations on the genome/chromosome
Alleles - variant forms of a gene

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 9 / 17



Biological Metaphors - Mendelian Genetics

Genotype - functional unit of inheritance
Phenotype - expression of genotype
Pleiotropy - one gene affects multiple phenotypic traits
Polygeny - one phenotypic trait is affected by multiple genes
Chromosomes - haploid versus diploid
Locus/Loci - gene location/locations on the genome/chromosome
Alleles - variant forms of a gene

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 9 / 17



Evolutionary Cycle

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 10 / 17



Nature versus digital realm

Environment - Problem search space
Environmental fitness - Fitness Function

Population - Set
Individual - Datastructure
Genes - Elements
Alleles - Datatype

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 11 / 17



Nature versus digital realm

Environment - Problem search space
Environmental fitness - Fitness Function
Population - Set

Individual - Datastructure
Genes - Elements
Alleles - Datatype

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 11 / 17



Nature versus digital realm

Environment - Problem search space
Environmental fitness - Fitness Function
Population - Set
Individual - Datastructure

Genes - Elements
Alleles - Datatype

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 11 / 17



Nature versus digital realm

Environment - Problem search space
Environmental fitness - Fitness Function
Population - Set
Individual - Datastructure
Genes - Elements

Alleles - Datatype

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 11 / 17



Nature versus digital realm

Environment - Problem search space
Environmental fitness - Fitness Function
Population - Set
Individual - Datastructure
Genes - Elements
Alleles - Datatype

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 11 / 17



Nature versus digital realm

Environment - Problem search space
Environmental fitness - Fitness Function
Population - Set
Individual - Datastructure
Genes - Elements
Alleles - Datatype

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 11 / 17



Assignment Series 1 Genotype-Phenotype Mapping

The genotype is a fixed-length linear representation, with len(shapes)
genes.
Each gene is a 3-tuple (x , y , r) specifying the location & rotation of a
specific shape.

Hence an allele is a tuple of three values, with x and y within the
bounds of the stock, and r within the range 0 to 3.
So a single integer value of x, y, or r is NOT a full allele in our
interpretation.
Some possible phenotypes are:

1 a matrix indicating for each cell which shapes overlap it
2 a matrix indicating for each cell how many shapes overlap it
3 a matrix indicating for each cell whether it’s not overlapped,

overlapped by one shape, or overlapped by multiple shapes

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 12 / 17



Assignment Series 1 Genotype-Phenotype Mapping

The genotype is a fixed-length linear representation, with len(shapes)
genes.
Each gene is a 3-tuple (x , y , r) specifying the location & rotation of a
specific shape.
Hence an allele is a tuple of three values, with x and y within the
bounds of the stock, and r within the range 0 to 3.

So a single integer value of x, y, or r is NOT a full allele in our
interpretation.
Some possible phenotypes are:

1 a matrix indicating for each cell which shapes overlap it
2 a matrix indicating for each cell how many shapes overlap it
3 a matrix indicating for each cell whether it’s not overlapped,

overlapped by one shape, or overlapped by multiple shapes

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 12 / 17



Assignment Series 1 Genotype-Phenotype Mapping

The genotype is a fixed-length linear representation, with len(shapes)
genes.
Each gene is a 3-tuple (x , y , r) specifying the location & rotation of a
specific shape.
Hence an allele is a tuple of three values, with x and y within the
bounds of the stock, and r within the range 0 to 3.
So a single integer value of x, y, or r is NOT a full allele in our
interpretation.

Some possible phenotypes are:
1 a matrix indicating for each cell which shapes overlap it
2 a matrix indicating for each cell how many shapes overlap it
3 a matrix indicating for each cell whether it’s not overlapped,

overlapped by one shape, or overlapped by multiple shapes

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 12 / 17



Assignment Series 1 Genotype-Phenotype Mapping

The genotype is a fixed-length linear representation, with len(shapes)
genes.
Each gene is a 3-tuple (x , y , r) specifying the location & rotation of a
specific shape.
Hence an allele is a tuple of three values, with x and y within the
bounds of the stock, and r within the range 0 to 3.
So a single integer value of x, y, or r is NOT a full allele in our
interpretation.
Some possible phenotypes are:

1 a matrix indicating for each cell which shapes overlap it

2 a matrix indicating for each cell how many shapes overlap it
3 a matrix indicating for each cell whether it’s not overlapped,

overlapped by one shape, or overlapped by multiple shapes

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 12 / 17



Assignment Series 1 Genotype-Phenotype Mapping

The genotype is a fixed-length linear representation, with len(shapes)
genes.
Each gene is a 3-tuple (x , y , r) specifying the location & rotation of a
specific shape.
Hence an allele is a tuple of three values, with x and y within the
bounds of the stock, and r within the range 0 to 3.
So a single integer value of x, y, or r is NOT a full allele in our
interpretation.
Some possible phenotypes are:

1 a matrix indicating for each cell which shapes overlap it
2 a matrix indicating for each cell how many shapes overlap it

3 a matrix indicating for each cell whether it’s not overlapped,
overlapped by one shape, or overlapped by multiple shapes

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 12 / 17



Assignment Series 1 Genotype-Phenotype Mapping

The genotype is a fixed-length linear representation, with len(shapes)
genes.
Each gene is a 3-tuple (x , y , r) specifying the location & rotation of a
specific shape.
Hence an allele is a tuple of three values, with x and y within the
bounds of the stock, and r within the range 0 to 3.
So a single integer value of x, y, or r is NOT a full allele in our
interpretation.
Some possible phenotypes are:

1 a matrix indicating for each cell which shapes overlap it
2 a matrix indicating for each cell how many shapes overlap it
3 a matrix indicating for each cell whether it’s not overlapped,

overlapped by one shape, or overlapped by multiple shapes

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 12 / 17



Assignment Series 1 Genotype-Phenotype Mapping

The genotype is a fixed-length linear representation, with len(shapes)
genes.
Each gene is a 3-tuple (x , y , r) specifying the location & rotation of a
specific shape.
Hence an allele is a tuple of three values, with x and y within the
bounds of the stock, and r within the range 0 to 3.
So a single integer value of x, y, or r is NOT a full allele in our
interpretation.
Some possible phenotypes are:

1 a matrix indicating for each cell which shapes overlap it
2 a matrix indicating for each cell how many shapes overlap it
3 a matrix indicating for each cell whether it’s not overlapped,

overlapped by one shape, or overlapped by multiple shapes

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 12 / 17



Genospace versus phenospace

Genotype space
Phenoype space

Encoding & Decoding
Eight/N-Queens Problem
Choice of representation

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 13 / 17



Genospace versus phenospace

Genotype space
Phenoype space
Encoding & Decoding

Eight/N-Queens Problem
Choice of representation

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 13 / 17



Genospace versus phenospace

Genotype space
Phenoype space
Encoding & Decoding
Eight/N-Queens Problem

Choice of representation

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 13 / 17



Genospace versus phenospace

Genotype space
Phenoype space
Encoding & Decoding
Eight/N-Queens Problem
Choice of representation

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 13 / 17



Genospace versus phenospace

Genotype space
Phenoype space
Encoding & Decoding
Eight/N-Queens Problem
Choice of representation

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 13 / 17



Genospace-phenospace mapping

Let F be the decoder function from G (genospace) to P (phenospace) and
x∗ be the global optimum.

F : G → P is surjective if ∀p ∈ P∃g ∈ G : F (g) = p
F : G → P is injective if ∀g1, g2 ∈ G(F (g1) = F (g2)) ⇒ (g1 = g2)
F : G → P is bijective if F is surjective and injective
If F is not surjective and x∗ /∈ F (G), then the EA cannot find the
global optimum. Therefore one should think twice before choosing a
non-surjective decoder function if one cannot guarantee that the
global optimum is still reachable.
F does not need to be injective, but realize there is less to search if F
is injective so there should be sufficient compensation, such as
limiting F(G) to valid solutions in a constraint satisfaction problem.

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 14 / 17



Genospace-phenospace mapping

Let F be the decoder function from G (genospace) to P (phenospace) and
x∗ be the global optimum.

F : G → P is surjective if ∀p ∈ P∃g ∈ G : F (g) = p

F : G → P is injective if ∀g1, g2 ∈ G(F (g1) = F (g2)) ⇒ (g1 = g2)
F : G → P is bijective if F is surjective and injective
If F is not surjective and x∗ /∈ F (G), then the EA cannot find the
global optimum. Therefore one should think twice before choosing a
non-surjective decoder function if one cannot guarantee that the
global optimum is still reachable.
F does not need to be injective, but realize there is less to search if F
is injective so there should be sufficient compensation, such as
limiting F(G) to valid solutions in a constraint satisfaction problem.

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 14 / 17



Genospace-phenospace mapping

Let F be the decoder function from G (genospace) to P (phenospace) and
x∗ be the global optimum.

F : G → P is surjective if ∀p ∈ P∃g ∈ G : F (g) = p
F : G → P is injective if ∀g1, g2 ∈ G(F (g1) = F (g2)) ⇒ (g1 = g2)

F : G → P is bijective if F is surjective and injective
If F is not surjective and x∗ /∈ F (G), then the EA cannot find the
global optimum. Therefore one should think twice before choosing a
non-surjective decoder function if one cannot guarantee that the
global optimum is still reachable.
F does not need to be injective, but realize there is less to search if F
is injective so there should be sufficient compensation, such as
limiting F(G) to valid solutions in a constraint satisfaction problem.

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 14 / 17



Genospace-phenospace mapping

Let F be the decoder function from G (genospace) to P (phenospace) and
x∗ be the global optimum.

F : G → P is surjective if ∀p ∈ P∃g ∈ G : F (g) = p
F : G → P is injective if ∀g1, g2 ∈ G(F (g1) = F (g2)) ⇒ (g1 = g2)
F : G → P is bijective if F is surjective and injective

If F is not surjective and x∗ /∈ F (G), then the EA cannot find the
global optimum. Therefore one should think twice before choosing a
non-surjective decoder function if one cannot guarantee that the
global optimum is still reachable.
F does not need to be injective, but realize there is less to search if F
is injective so there should be sufficient compensation, such as
limiting F(G) to valid solutions in a constraint satisfaction problem.

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 14 / 17



Genospace-phenospace mapping

Let F be the decoder function from G (genospace) to P (phenospace) and
x∗ be the global optimum.

F : G → P is surjective if ∀p ∈ P∃g ∈ G : F (g) = p
F : G → P is injective if ∀g1, g2 ∈ G(F (g1) = F (g2)) ⇒ (g1 = g2)
F : G → P is bijective if F is surjective and injective
If F is not surjective and x∗ /∈ F (G), then the EA cannot find the
global optimum. Therefore one should think twice before choosing a
non-surjective decoder function if one cannot guarantee that the
global optimum is still reachable.

F does not need to be injective, but realize there is less to search if F
is injective so there should be sufficient compensation, such as
limiting F(G) to valid solutions in a constraint satisfaction problem.

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 14 / 17



Genospace-phenospace mapping

Let F be the decoder function from G (genospace) to P (phenospace) and
x∗ be the global optimum.

F : G → P is surjective if ∀p ∈ P∃g ∈ G : F (g) = p
F : G → P is injective if ∀g1, g2 ∈ G(F (g1) = F (g2)) ⇒ (g1 = g2)
F : G → P is bijective if F is surjective and injective
If F is not surjective and x∗ /∈ F (G), then the EA cannot find the
global optimum. Therefore one should think twice before choosing a
non-surjective decoder function if one cannot guarantee that the
global optimum is still reachable.
F does not need to be injective, but realize there is less to search if F
is injective so there should be sufficient compensation, such as
limiting F(G) to valid solutions in a constraint satisfaction problem.

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 14 / 17



Genospace-phenospace mapping

Let F be the decoder function from G (genospace) to P (phenospace) and
x∗ be the global optimum.

F : G → P is surjective if ∀p ∈ P∃g ∈ G : F (g) = p
F : G → P is injective if ∀g1, g2 ∈ G(F (g1) = F (g2)) ⇒ (g1 = g2)
F : G → P is bijective if F is surjective and injective
If F is not surjective and x∗ /∈ F (G), then the EA cannot find the
global optimum. Therefore one should think twice before choosing a
non-surjective decoder function if one cannot guarantee that the
global optimum is still reachable.
F does not need to be injective, but realize there is less to search if F
is injective so there should be sufficient compensation, such as
limiting F(G) to valid solutions in a constraint satisfaction problem.

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 14 / 17



The 0-1 Knapsack Problem

Given a set of n items with values vi and cost ci , select a subset that
maximises value while not exceeding the capacity limit Cmax .We consider
two cases:

1 fitness(p) =
∑n

i=1(vi · gi)

2 Modify fitness(p) to exclude items that would exceed Cmax

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 15 / 17



The 0-1 Knapsack Problem

Given a set of n items with values vi and cost ci , select a subset that
maximises value while not exceeding the capacity limit Cmax .We consider
two cases:

1 fitness(p) =
∑n

i=1(vi · gi)
2 Modify fitness(p) to exclude items that would exceed Cmax

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 15 / 17



The 0-1 Knapsack Problem

Given a set of n items with values vi and cost ci , select a subset that
maximises value while not exceeding the capacity limit Cmax .We consider
two cases:

1 fitness(p) =
∑n

i=1(vi · gi)
2 Modify fitness(p) to exclude items that would exceed Cmax

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 15 / 17



Problem solving steps

Collect problem knowledge
Choose gene representation

Design fitness function
Creation of initial population
Parent selection
Decide on genetic operators
Competition / survival
Choose termination condition
Find good parameter values

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 16 / 17



Problem solving steps

Collect problem knowledge
Choose gene representation
Design fitness function

Creation of initial population
Parent selection
Decide on genetic operators
Competition / survival
Choose termination condition
Find good parameter values

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 16 / 17



Problem solving steps

Collect problem knowledge
Choose gene representation
Design fitness function
Creation of initial population

Parent selection
Decide on genetic operators
Competition / survival
Choose termination condition
Find good parameter values

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 16 / 17



Problem solving steps

Collect problem knowledge
Choose gene representation
Design fitness function
Creation of initial population
Parent selection

Decide on genetic operators
Competition / survival
Choose termination condition
Find good parameter values

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 16 / 17



Problem solving steps

Collect problem knowledge
Choose gene representation
Design fitness function
Creation of initial population
Parent selection
Decide on genetic operators

Competition / survival
Choose termination condition
Find good parameter values

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 16 / 17



Problem solving steps

Collect problem knowledge
Choose gene representation
Design fitness function
Creation of initial population
Parent selection
Decide on genetic operators
Competition / survival

Choose termination condition
Find good parameter values

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 16 / 17



Problem solving steps

Collect problem knowledge
Choose gene representation
Design fitness function
Creation of initial population
Parent selection
Decide on genetic operators
Competition / survival
Choose termination condition

Find good parameter values

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 16 / 17



Problem solving steps

Collect problem knowledge
Choose gene representation
Design fitness function
Creation of initial population
Parent selection
Decide on genetic operators
Competition / survival
Choose termination condition
Find good parameter values

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 16 / 17



Problem solving steps

Collect problem knowledge
Choose gene representation
Design fitness function
Creation of initial population
Parent selection
Decide on genetic operators
Competition / survival
Choose termination condition
Find good parameter values

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 16 / 17



Permutation Representations

Order based (e.g., job shop scheduling)
Adjacency based (e.g., TSP)

Encodings
▶ Event space: [A,B,C,D]
▶ Permutation: [3,1,2,4]
▶ Mapping 1: [C,A,B,D] → allele in locus i indicates event in that place

in the sequence
▶ Mapping 2: [B,C,A,D] → allele in locus i indicates when the i th event

takes place

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 17 / 17



Permutation Representations

Order based (e.g., job shop scheduling)
Adjacency based (e.g., TSP)
Encodings
▶ Event space: [A,B,C,D]

▶ Permutation: [3,1,2,4]
▶ Mapping 1: [C,A,B,D] → allele in locus i indicates event in that place

in the sequence
▶ Mapping 2: [B,C,A,D] → allele in locus i indicates when the i th event

takes place

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 17 / 17



Permutation Representations

Order based (e.g., job shop scheduling)
Adjacency based (e.g., TSP)
Encodings
▶ Event space: [A,B,C,D]
▶ Permutation: [3,1,2,4]

▶ Mapping 1: [C,A,B,D] → allele in locus i indicates event in that place
in the sequence

▶ Mapping 2: [B,C,A,D] → allele in locus i indicates when the i th event
takes place

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 17 / 17



Permutation Representations

Order based (e.g., job shop scheduling)
Adjacency based (e.g., TSP)
Encodings
▶ Event space: [A,B,C,D]
▶ Permutation: [3,1,2,4]
▶ Mapping 1: [C,A,B,D]

→ allele in locus i indicates event in that place
in the sequence

▶ Mapping 2: [B,C,A,D] → allele in locus i indicates when the i th event
takes place

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 17 / 17



Permutation Representations

Order based (e.g., job shop scheduling)
Adjacency based (e.g., TSP)
Encodings
▶ Event space: [A,B,C,D]
▶ Permutation: [3,1,2,4]
▶ Mapping 1: [C,A,B,D] → allele in locus i indicates event in that place

in the sequence

▶ Mapping 2: [B,C,A,D] → allele in locus i indicates when the i th event
takes place

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 17 / 17



Permutation Representations

Order based (e.g., job shop scheduling)
Adjacency based (e.g., TSP)
Encodings
▶ Event space: [A,B,C,D]
▶ Permutation: [3,1,2,4]
▶ Mapping 1: [C,A,B,D] → allele in locus i indicates event in that place

in the sequence
▶ Mapping 2: [B,C,A,D]

→ allele in locus i indicates when the i th event
takes place

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 17 / 17



Permutation Representations

Order based (e.g., job shop scheduling)
Adjacency based (e.g., TSP)
Encodings
▶ Event space: [A,B,C,D]
▶ Permutation: [3,1,2,4]
▶ Mapping 1: [C,A,B,D] → allele in locus i indicates event in that place

in the sequence
▶ Mapping 2: [B,C,A,D] → allele in locus i indicates when the i th event

takes place

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 17 / 17



Permutation Representations

Order based (e.g., job shop scheduling)
Adjacency based (e.g., TSP)
Encodings
▶ Event space: [A,B,C,D]
▶ Permutation: [3,1,2,4]
▶ Mapping 1: [C,A,B,D] → allele in locus i indicates event in that place

in the sequence
▶ Mapping 2: [B,C,A,D] → allele in locus i indicates when the i th event

takes place

Daniel Tauritz (Auburn University) EC Lecture Slides September 9, 2024 17 / 17


