COMP 5660/6660 - Evolutionary Computing - Lecture Slides

Daniel Tauritz, PhD

Auburn University

August 18, 2023

Computational Problem Solving

• Step 1: build abstract/computational model of the real-world

¹https://quoteinvestigator.com/2011/05/13/einstein-simple/

Computational Problem Solving

- Step 1: build abstract/computational model of the real-world
- Step 2: solve computationally in abstract model

Computational Problem Solving

- Step 1: build abstract/computational model of the real-world
- Step 2: solve computationally in abstract model
- "Everything Should Be Made as Simple as Possible, But Not Simpler"¹
- Step 3: map solution back to real-world

¹https://quoteinvestigator.com/2011/05/13/einstein-simple/

• Many computational problems can be formulated as generate-and-test search problems

- Many computational problems can be formulated as generate-and-test search problems
- A search space contains the set of all possible solutions

- Many computational problems can be formulated as generate-and-test search problems
- A search space contains the set of all possible solutions
- A **search space generator** is *complete* if it can generate the entire search space

- Many computational problems can be formulated as generate-and-test search problems
- A search space contains the set of all possible solutions
- A search space generator is *complete* if it can generate the entire search space
- An objective function tests the quality of a solution

- Many computational problems can be formulated as generate-and-test search problems
- A search space contains the set of all possible solutions
- A **search space generator** is *complete* if it can generate the entire search space
- An objective function tests the quality of a solution
- A heuristic is a problem-dependent rule-of-thumb

- Many computational problems can be formulated as generate-and-test search problems
- A search space contains the set of all possible solutions
- A search space generator is *complete* if it can generate the entire search space
- An objective function tests the quality of a solution
- A heuristic is a problem-dependent rule-of-thumb
- A meta-heuristic is a general heuristic to determine the sampling order over a search space with the goal to find a near-optimal solution (or set of solutions)

- Many computational problems can be formulated as generate-and-test search problems
- A search space contains the set of all possible solutions
- A **search space generator** is *complete* if it can generate the entire search space
- An objective function tests the quality of a solution
- A heuristic is a problem-dependent rule-of-thumb
- A meta-heuristic is a general heuristic to determine the sampling order over a search space with the goal to find a near-optimal solution (or set of solutions)
- A hyper-heuristic is a meta-heuristic for a space of programs

Algorithmic Toolbox

• A Black-Box Search Algorithm (BBSA) is a meta-heuristic which iteratively generates trial solutions employing solely the information gained from previous trial solutions, but no explicit problem knowledge

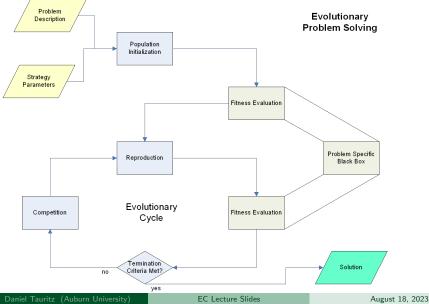
Algorithmic Toolbox

- A Black-Box Search Algorithm (BBSA) is a meta-heuristic which iteratively generates trial solutions employing solely the information gained from previous trial solutions, but no explicit problem knowledge
- Evolutionary Algorithms (EAs) can be described as a class of stochastic, population-based BBSAs inspired by Evolution Theory, Genetics, and Population Dynamics

Algorithmic Toolbox

- A Black-Box Search Algorithm (BBSA) is a meta-heuristic which iteratively generates trial solutions employing solely the information gained from previous trial solutions, but no explicit problem knowledge
- Evolutionary Algorithms (EAs) can be described as a class of stochastic, population-based BBSAs inspired by Evolution Theory, Genetics, and Population Dynamics

Evolutionary Cycle



Let *F* be the decoder function from *G* (genospace) to *P* (phenospace) and x^* be the global optimum.

• $F: G \rightarrow P$ is surjective if $\forall p \in P \exists g \in G : F(g) = p$

- $F: G \to P$ is surjective if $\forall p \in P \exists g \in G : F(g) = p$
- $F: G \rightarrow P$ is injective if $\forall g_1, g_2 \in G(F(g_1) = F(g_2)) \Rightarrow (g_1 = g_2)$

- $F: G \to P$ is surjective if $\forall p \in P \exists g \in G : F(g) = p$
- $F: G \rightarrow P$ is injective if $\forall g_1, g_2 \in G(F(g_1) = F(g_2)) \Rightarrow (g_1 = g_2)$
- $F: G \rightarrow P$ is *bijective* if F is surjective and injective

- $F: G \to P$ is surjective if $\forall p \in P \exists g \in G : F(g) = p$
- $F: G \rightarrow P$ is injective if $\forall g_1, g_2 \in G(F(g_1) = F(g_2)) \Rightarrow (g_1 = g_2)$
- $F: G \rightarrow P$ is *bijective* if F is surjective and injective
- If F is not surjective and x* ∉ F(G), then the EA cannot find the global optimum. Therefore one should think twice before choosing a non-surjective decoder function if one cannot guarantee that the global optimum is still reachable.

- $F: G \rightarrow P$ is surjective if $\forall p \in P \exists g \in G : F(g) = p$
- $F: G \rightarrow P$ is injective if $\forall g_1, g_2 \in G(F(g_1) = F(g_2)) \Rightarrow (g_1 = g_2)$
- $F: G \rightarrow P$ is *bijective* if F is surjective and injective
- If F is not surjective and x^{*} ∉ F(G), then the EA cannot find the global optimum. Therefore one should think twice before choosing a non-surjective decoder function if one cannot guarantee that the global optimum is still reachable.
- F does not need to be injective, but realize there is less to search if F is injective so there should be sufficient compensation, such as limiting F(G) to valid solutions in a constraint satisfaction problem.

Given a set of *n* items with values v_i and cost c_i , select a subset that maximises value while not exceeding the capacity limit C_{max} .

Given a set of *n* items with values v_i and cost c_i , select a subset that maximises value while not exceeding the capacity limit C_{max} . We consider two cases:

• fitness
$$(p) = \sum_{i=1}^{n} (v_i \cdot g_i)$$

Given a set of *n* items with values v_i and cost c_i , select a subset that maximises value while not exceeding the capacity limit C_{max} . We consider two cases:

- fitness $(p) = \sum_{i=1}^{n} (v_i \cdot g_i)$
- **2** Modify fitness(p) to exclude items that would exceed C_{max}