
Employing Supportive Coevolution for the 
Automated Design and Configuration of Evolutionary 

Algorithm Operators and Parameters

Nathaniel Kamrath
Evolutionary Computing – Fall 2021



Outline

• Introduction

• Using SuCo to Evolve Self-Configuring Crossover

• The Automated Design of Local Optimizers for Memetic 
Algorithms Employing SuCo

• The Evolution of Deme Specific Local Optimizers in a Diffusion 
Memetic Algorithm Employing SuCo

• Solving the Traveling Thief Problem with a Diffusion Memetic 
Algorithm Employing SuCo



Introduction GP

+

*

2a

^

b 3

Tree GP:
(a*2) + (b^3)

Stack GP:
(a*2) + (b^3)

EXEC INPUT INT

a, b

INPUT.TO_INT b a

INT.2 b 2, a

INT.MULTIPLY b 2a

INT.3 b, 2a

INPUT.TO_INT b, 3, 2a

INT.POWER b^3, 2a

INT.ADD (b^3 + 2a)



Introduction SuCo

• Supportive Coevolution (SuCo)

– Technique for online parameter and operator evolution



Using SuCo to Evolve SCX

• Self-Configuring Crossover (SCX)

– Self-adaptive technique for dynamic crossover operator design

– Linear Genetic Programming (LGP) structure

– Primitives
• Swap – represents crossovers that move genetic information between parents 

and between positions in a single parent (n-point, uniform, permutation)

• Merge – represents crossovers that create genetic material by combining 
genes (arithmetic crossover)



SCX Design

• SuCo + SCX

– Two support populations

• SCX for crossover operator

• Mutation Step Size parameter



SuCo SCX Experiments

• Rastrigin

• Rosenbrock

• Shifted Rastrigin



SuCo SCX Results

Rastrigin Results

Shifted Rastrigin Results

Rosenbrock Results

• Man-Whitney U tests 
with α = 0.01

– SuCo Mutation + SuCo
SCX was found to be the 
best combination on 
Rastrigin and Rosenbrock

– SuCo Mutation + SuCo
SCX was the same as 
SuCo Mutation + SA SCX 
on Shifted Rastrigin



SuCo SCX Discussion

• Evals Per Generation

– Mean best fitness over 50 runs 
on Shifted Rastrigin

– Less evaluations per generation 
results in faster adjustments 
from support population



SuCo SCX Discussion

• 300k evaluations averaged 
over 10 runs

– Relative positions unchanged

– Self-adapted vs 1 Eval Per 
Generation



SuCo SCX Conclusions

• SuCo + SCX can improve EA performance through flexibility

– Can outperform self-adaptation

• SuCo is a promising way of evolving multiple parameters and 
operators



SuCo MA

• Supportive Coevolution Memetic Algorithm (SuCo MA)

• Single support population of local optimizers encoded using 
PushGP to create a generative hyper-heuristic

– PushGP is a stack based, linear programming language that is well 
suited for program evolution

– Support population explores the space of local optimization 
algorithms



SuCo MA Structure



PushGP Vector Stack Instructions



SuCo MA Experiments

• Shift Vector

• Shifted Rastrigin

• Shifted Rosenbrock



SuCo MA Results

Shifted Rastrigin Results

Shifted Rosenbrock Results



SuCo MA Results

• Fitness vs. evals for Shifted Rastrigin in 200 dimensions



SuCo MA Results

• Fitness vs. evals Shifted Rosenbrock in 50 dimensions



SuCo MA Evolved Optimizers



SuCo MA Discussion

• Evaluations Per Local Optimizer

– Each local optimizer can be applied to multiple primary individuals



SuCo MA Discussion

• Selective Optimization

– It is not necessary to perform optimization every generation of the 
primary population



SuCo MA Discussion

• Handling Optimization Results

– After local optimization, the resulting genes and fitness value can be 
handled in different ways



SuCo MA Conclusions

• Using SuCo to evolve PushGP encoded local optimizers can 
improve performance

• This can reduce MA configuration by automatically designing 
optimization algorithms

• It can also improve performance since the local optimization 
strategy can adapt to the current state of the EA throughout 
the evolutionary run



SuCo-Dif-MA

• Extends SuCo MA by adding a diffusion model to create SuCo-
Dif-MA

• Diffusion model can encourage the evolution of deme specific 
strategies



SuCo-Dif-MA PushGP Vector Instructions



SuCo-Dif-MA Experiments

• Shift Vector

• Shifted Schwefel

• Shifted Rosenbrock



SuCo-Dif-MA Results



SuCo-Dif-MA Results

• Shifted Schwefel fitness vs evals in 200 dimensions



SuCo-Dif-MA Results

• Shifted Rosenbrock fitness vs evals in 200 Dimensions



SuCo-Dif-MA Discussion

• Local optimizer fitness function

– In contrast with SuCo-MA, SuCo-Dif-MA performance was improved 
by using the maximum improvement found across 4 optimization 
trials against different primary individuals

– Encouraged deme specific strategies



High Performance Optimizer Discovery

• High performance optimizer 
discovery can take time, but 
can yield large improvements 
in fitness



SuCo-Dif-MA Discussion

• Optimization Frequency

– Improvement on previous work’s study of Selective Optimization 
parameter



SuCo-Dif-MA Conclusions

• SuCo-Dif-MA can improve performance when compared to 
SuCo-MA

• High performance, deme specific optimization strategies can be 
evolved, but their evolution takes time and is not consistent



SuCo-Dif-MA and TTP

• Traveling Thief Problem (TTP) is a combination of the classical 
Traveling Salesman Problem (TSP) and the Knapsack Problem 
(KP)

• High quality TTP solutions must consider both the TSP and KP 
sub-problems simultaneously

• TTP has been shown to be a good benchmark for simulating the 
complexity and difficulty of real world problems.



TTP Problem Definition

• An instance of TTP is defined by the following parameters

– 𝑛: number of cities

– 𝑚: number of items

• Each item has profit 𝑝𝑘 and weight 𝑤𝑘

– Knapsack has capacity 𝑊

– Renting rate 𝑅

– Thief has a minimum and maximum velocity 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥

– A valid TTP solution visits every city exactly one time while filling the 
knapsack without exceeding the capacity and then traveling back to 
the starting city.



TTP Problem Definition

• Thief velocity calculation:

• Total knapsack profit:

• Total thief travel time: 

• Objective Function: 



TTP Example

• 𝑊 = 3,𝑣𝑚𝑖𝑛 = 0.1, 𝑣𝑚𝑎𝑥 = 1.0

• Tour 𝑥 = (1, 2, 4, 3)

• Packing plan 𝑧 = 0, 0, 0, 1, 1, 0



TTP Example

• 𝑧 = (0, 0, 0, 1, 1, 0)

• 𝑔 𝑧 = 20 ∙ 0 + 30 ∙ 0 + 100 ∙ 0 + 40 ∙ 1 + 40 ∙ 1 +
20 ∙ 0 = 80



TTP Example

• 𝑥 = 1, 2, 4, 3

• 𝑓 𝑥, 𝑧 =
5

(1−
1−0.1

3
∙0)

+
6

(1−
1−0.1

3
∙0)

+
4

(1−
1−0.1

3
∙0)

+
6

(1−
1−0.1

3
∙2)

• 𝑓 𝑥, 𝑧 = 5 + 6 + 4 + 15 = 30



TTP Example

• 𝑔 𝑧 = 80

• 𝑓 𝑥, 𝑧 = 30

• 𝐺 𝑥, 𝑧 = 𝑔 𝑧 − 𝑅 ∙ 𝑓 𝑥, 𝑧 = 80 − 1 ∙ 30 = 50



SuCo-Dif-MA TTP Instructions



Experiments

• Representative benchmark set of community adopted TTP 
instances ranging from smallest to largest

• TTP Categories

– Category 1 – 1 item per city, bounded strongly correlated item 
weight/profit, small knapsack capacity

– Category 2 – 5 items per city, uncorrelated similar weight/profit, 
average knapsack capacity

– Category 3 – 10 items per city, uncorrelated weight/profit, large 
knapsack capacity



SuCo-Dif-MA TTP Results

• Category 1 instance results



SuCo-Dif-MA TTP Results

• Category 2 instance results



SuCo-Dif-MA TTP Results

• Category 3 instance results



TTP Discussion

• Selective optimization

– Larger impact on TTP

– Best found approach was to skip a number of primary generations 
between each support generation (similar to previous work), but 
execute several support generations in a row

• Evaluations per local optimizer

– Previous work found the optimal setting for this parameter was small 
(1 for SuCo-MA and 4 for SuCo-Dif-MA), however on TTP the optimal 
setting was 7 or 8 depending on the problem instance



TTP Discussion

• Local optimizer programs are very sensitive to change

• Strategies that worked in previous generations may not be 
effective in the current generation due to changes in the 
primary population

• A method to aid the support population in offspring generation

– Which primitives are effective?

– What combinations of primitives are effective?



TTP Conclusions

• SuCo-Dif-MA can be applied to TTP with minimal changes (new 
instruction set)

• SuCo-Dif-MA is a promising approach producing competitive 
results

• More work is required to solve some underlying problems but 
could result in performance improvements



Final Conclusions

• SuCo has been used to successfully evolve mutation step size, 
crossover operators, and local optimization operators

– SuCo can improve performance when compared to both static 
parameters and operators as well as self-adapted parameters

• SuCo-MA and SuCo-Dif-MA evolved mainly stochastic local 
optimizers

– Creating high quality deterministic optimizers is probably much 
harder than simple, random, “lucky” operators

– It is challenging to create deterministic strategies instead of informed 
mutators



Future Work

• Evolve more operators and parameters

– Selection operators, population size, etc.

• Perform experiments with more than two support populations

• Determine if performance improvements from diffusion model 
benefits other operators/parameters in SuCo

• Improve upon local optimizer evolution

– General improvements to program evolution to address 
stability/sensitivity issues

– Address challenges of online dynamic program evolution



Questions

• Thank you!

• Questions?


