Evolving Multi-level Graph Partitioning Algorithms

Aaron Pope \(^1\) \(^2\) Daniel Tauritz \(^1\) Alexander Kent \(^2\)

\(^1\)Department of Computer Science, Missouri University of Science and Technology, Rolla, Missouri 65409

\(^2\)Los Alamos National Laboratory, Los Alamos, New Mexico 87545

December 8, 2016
Graph Partitioning

- Graph partitioning can be applied to several problems
 - Parallel computation: minimize inter-process communication
 - Network security: placing network traffic monitors at critical junctures
- In general, optimal graph partitioning is NP-hard
- Real-time applications require fast approximation heuristics
Multi-level Graph Partitioning

1. Approximate graph with sequence of smaller graphs
2. Quickly partition smallest graph
3. Use partition of smallest graph as an initial partition of the next smallest
4. Perform greedy search to improve the quality of the partition
5. Repeat steps 3 and 4 until partition is found for the original graph
Coarsening: Matching Contraction

A. Pope et. al. (Missouri S&T & LANL) Evolving Graph Partitioning Algorithms December 8, 2016 4 / 17
Coarsening: Subgraph Contraction

A \{D, E, F\}

{B, C, G}

{D, E, F}
Multi-level partitioning of power-law graphs can be improved with specialized coarsening heuristics*

Demonstrates the potential to customize an algorithm for graphs with particular characteristics

Manually developing new heuristics can be expensive

Process can be automated using hyper-heuristics

Hyper-heuristic Approach

- Extract functionality from existing graph partitioning techniques
- Use Genetic Programming (GP) to construct new algorithms
Methodology

- Evolve a population of graph partition algorithms
- Strongly typed parse tree representation
- Evolution targeted at specific type of graph (e.g., random graph model, computer network)
- Cost of partitions produced determines solution fitness (averaged over many graphs)

\[
\text{Fitness} = \frac{1}{|P|} \sum_{p \in P} \left[\sum_{(u,v) \mid p[u] \neq p[v]} w_{e[(u,v)]} \right]
\]
Root node
- child node for each of: coarsening, partitioning, uncoarsening

Coarsening
- Traditional matching schemes: random, heavy edge, light edge
- Globally greedy: considers all edges in graph sorted by some metric
- Locally greedy: randomly visits vertices, considers incident edges
- Edge metrics: weight, degree, or core number of incident vertices, or edge weight (can be combined using math operators)
Globally and Locally Greedy Coarsening

- Edge metric
- Reverse ordering (maximize)
- Maximum vertex weight ratio
- Maximum contraction ratio
Primitive Operations (cont.)

Partitioning
- random, growth, greedy growth, spectral, Kernighan-Lin

Uncoarsening
- KL refinement, greedy refinement

Miscellaneous
- Constants: integers, ratios, booleans
- Random conditional: randomly true or false according to child probability value
Partition algorithms are evolved targeting:

- Erdös-Rényi random graphs
- Barabási-Albert random graphs
- Los Alamos National Laboratory (LANL) authentication graphs

Performance is compared against METIS partitioning software as well as spectral partitioning.
Results

<table>
<thead>
<tr>
<th>Method</th>
<th>E_{ER}</th>
<th>E_{BA}</th>
<th>E_{LANL}</th>
<th>METIS</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{ER}</td>
<td>0.0</td>
<td>−0.06</td>
<td>−0.38</td>
<td>−0.06</td>
<td>−4.55</td>
</tr>
<tr>
<td>E_{BA}</td>
<td>−0.53</td>
<td>0.0</td>
<td>−0.12</td>
<td>−0.72</td>
<td>−0.92</td>
</tr>
<tr>
<td>E_{LANL}</td>
<td>−0.48</td>
<td>−0.10</td>
<td>0.0</td>
<td>−2.97</td>
<td>−3.90</td>
</tr>
</tbody>
</table>

Barabási-Albert

LANL network
Representative High Fitness Final Evolved Solution (E_{BA})
Conclusion

- Multi-level partitioning algorithms can be tailored to specific graph types, including real-world networks.
- These customized heuristics improve upon general purpose graph partitioning methods.
- The design process can be automated using hyper-heuristics.
Future Work

- Evaluate execution time as an additional objective
- Alternatives to balanced bisection
- Community detection applications
- Relax the coarsening \rightarrow partition \rightarrow uncoarsening format restriction to allow for more flexibility in algorithm structure
Questions?