Evolving Multi-level Graph Partitioning Algorithms

Aaron Pope ^{1 2} Daniel Tauritz ¹ Alexander Kent ²

¹Department of Computer Science, Missouri University of Science and Technology, Rolla, Missouri 65409

> ²Los Alamos National Laboratory Los Alamos, New Mexico 87545

> > December 8, 2016

Graph Partitioning

- Graph partitioning can be applied to several problems
 - Parallel computation: minimize inter-process communication
 - Network security: placing network traffic monitors at critical junctures
- In general, optimal graph partitioning is NP-hard
- Real-time applications require fast approximation heuristics

Multi-level Graph Partitioning

- Approximate graph with sequence of smaller graphs
- Quickly partition smallest graph
- Use partition of smallest graph as an initial partition of the next smallest
- Perform greedy search to improve the quality of the partition
- Repeat steps 3 and 4 until partition is found for the original graph

Coarsening: Matching Contraction

Coarsening: Subgraph Contraction

Optimizing Multi-level Partitioning

- Multi-level partitioning of power-law graphs can be improved with specialized coarsening heuristics*
- Demonstrates the potential to customize an algorithm for graphs with particular characteristics
- Manually developing new heuristics can be expensive
- Process can be automated using hyper-heuristics

*A. Abou-Rjeili and G. Karypis, "Multilevel Algorithms for Partitioning Power-law Graphs," in Proceedings of the 20th International Parallel and Distributed Processing Symposium (IPDPS'06), IEEE, Rhodes Island, Greece, 2006.

Hyper-heuristic Approach

- Extract functionality from existing graph partitioning techniques
- Use Genetic Programming (GP) to construct new algorithms

Methodology

- Evolve a population of graph partition algorithms
- Strongly typed parse tree representation
- Evolution targeted at specific type of graph (e.g., random graph model, computer network)
- Cost of partitions produced determines solution fitness (averaged over many graphs)

$$\textit{Fitness} = rac{1}{|P|} \sum_{p \in P} \left[\sum_{(u,v)| p[u] \neq p[v]} w_e\left[(u,v)\right]
ight]$$

Primitive Operations

Root node

• child node for each of: coarsening, partitioning, uncoarsening

Coarsening

- Traditional matching schemes: random, heavy edge, light edge
- Globally greedy: considers all edges in graph sorted by some metric
- Locally greedy: randomly visits vertices, considers incident edges
- Edge metrics: weight, degree, or core number of incident vertices, or edge weight (can be combined using math operators)

Globally and Locally Greedy Coarsening

- Edge metric
- Reverse ordering (maximize)
- Maximum vertex weight ratio
- Maximum contraction ratio

Primitive Operations (cont.)

Partitioning

• random, growth, greedy growth, spectral, Kernighan-Lin

Uncoarsening

• KL refinement, greedy refinement

Miscellaneous

- Constants: integers, ratios, booleans
- Random conditional: randomly true or false according to child probability value

Partition algorithms are evolved targeting:

- Erdös-Rényi random graphs
- Barabási-Albert random graphs
- Los Alamos National Laboratory (LANL) authentication graphs

Performance is compared against METIS partitioning software as well as spectral partitioning

Results

Method	E _{ER}	E BA	ELANL	METIS	SP
E _{ER}	0.0	-0.06	-0.38	-0.06	-4.55
E _{BA}	-0.53	0.0	-0.12	-0.72	-0.92
ELANL	-0.48	-0.10	0.0	-2.97	-3.90

Barabási-Albert

LANL network

Representative High Fitness Final Evolved Solution (E_{BA})

Conclusion

- Multi-level partitioning algorithms can be tailored to specific graph types, including real-world networks
- These customized heuristics improve upon general purpose graph partitioning methods
- The design process can be automated using hyper-heuristics

Future Work

- Evaluate execution time as an additional objective
- Alternatives to balanced bisection
- Community detection applications
- Relax the coarsening → partition → uncoarsening format restriction to allow for more flexibility in algorithm structure

Questions?