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Part I: Engineered Systems & Security

Why You Should Care

You rely in your daily life on a myriad of engineered systems
Modern engineered systems tend to be cyber-physical in nature

Cyber-physical engineered systems are extremely vulnerable to attack
Cyber-physical engineered system attack surfaces tend to be
astronomically large and infeasible to fully secure
Only AI is capable of examining the combinatorially large number of
unique attacks and defenses on modern engineered systems
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Part I: Engineered Systems & Security

What is an Engineered System?

NSF’s Engineering Research Center website defines engineered systems as:

“a combination of components that work in synergy to collectively perform
a useful function. The engineered system could, for example, wholly or in
part constitute a new technology for a new product line a new
manufacturing process, a technology to improve the delivery of a service,
or an infrastructure system.”

Examples:
Modern Automobiles, Planes, and Trains
Industry 4.0: Chemical Plant, Biotechnology, Agriculture
Advanced Manufacturing Facility
Smart Electric Grid
Internet, Enterprise Computer Networks, Cloud Computing
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Part I: Engineered Systems & Security

Critical Infrastructure Sectors

DHS’ Cybersecurity and Infrastructure Security Agency (CISA) lists 16
critical infrastructure sectors:

Chemical
Commercial Facilities
Communications
Critical Manufacturing
Dams
Defense Industrial Base
Emergency Services
Energy
Financial Services

Food and Agriculture
Government Facilities
Healthcare and Public Health
Information Technology Sector
Nuclear Reactors, Materials,
and Waste
Transportation Systems
Water and Wastewater
Systems
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Part I: Engineered Systems & Security

Engineered System Security as a Game

Two or more adversaries: one defender and one or more attackers
Attackers range from so-called “script-kiddies” to organized crime,
terrorist organizations, and adversarial nation states

Attacker goals are diverse
Defender needs to simulatenously defend against this wide variety of
attackers
Asymetric non-zero sum game
Game theory allows for mathematical analysis of adversarial models
Classic game theory does not scale to complex, real-world systems
Computational game theory achieves scalability by approximating
Nash equilibria
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Part II: Adversarial AI Setting the Stage

AI for security versus security of AI

Security of AI (e.g., Adversarial Machine Learning)
AI for security

When applying AI to solve security problems, the AI can be vulnerable
itself
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Part II: Adversarial AI Setting the Stage

Terminology

Many computational problems can be formulated as
generate-and-test search problems
A search space contains the set of all possible solutions

A search space generator is complete if it can generate the entire
search space
An objective function tests the quality of a solution
A heuristic is a problem-dependent rule-of-thumb
A meta-heuristic determines the sampling order over a search space
with the goal to find a near-optimal solution (or set of solutions)
A hyper-heuristic is a meta-heuristic for a space of programs
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Part II: Adversarial AI Setting the Stage

Algorithmic Toolbox

A Black-Box Search Algorithm (BBSA) is a meta-heuristic which
iteratively generates trial solutions employing solely the information
gained from previous trial solutions, but no explicit problem knowledge
Evolutionary Algorithms (EAs) can be described as a class of
stochastic, population-based BBSAs inspired by Evolution Theory,
Genetics, and Population Dynamics

Genetic Programming (GP) is a type of EA for searching a space of
programs
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Part II: Adversarial AI Setting the Stage

Evolutionary Cycle
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Part II: Adversarial AI Setting the Stage

Genetic Programming

EA with Hierarchical Representation for Model Identification
Koza style Tree GP is the most prevalent
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Part II: Adversarial AI Setting the Stage

Genetic Programming - Mutation
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Part II: Adversarial AI Setting the Stage

Genetic Programming - Recombination
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Part II: Adversarial AI Introduction to Coevolution

Real-World Game-Theoretic Problems

Game Theory: multi-agent problem with conflicting
utility functions
Real-world examples:
I economic & military strategy

I arms control
I auctions
I cyber security

Common problem: real-world games are typically
incomputable
Solution: Computational Game Theory
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Part II: Adversarial AI Introduction to Coevolution

Approximating Incomputable Games

Consider the space of each user’s actions
Perform local search in these spaces

Solution quality in one space is dependent on the
search in the other spaces
The simultaneous search of co-dependent spaces is
naturally modeled as an armsrace
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Part II: Adversarial AI Introduction to Coevolution

Classical Computational Solver Limitations

Complex real-world problems can be (practically)
unsolvable with classic approaches

Black box
“Ill-behaved” search space

Intractable
Evolution has a demonstrated ability to solve very
complex problems
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Part II: Adversarial AI Introduction to Coevolution

Coevolutionary Algorithm (CoEA)

CoEAs are a special type of EAs where the fitness of an
individual is dependent on other individuals (i.e.,
individuals are explicitly part of the environment)

Single species vs. multiple species

Cooperative vs. competitive coevolution
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Part II: Adversarial AI Introduction to Coevolution

Two-Population Competitive Coevolutionary Cycle
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Part II: Adversarial AI Coevolving Attacker and Defender Strategies

CIAO Plot Example
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Part III: Engineered System Security through AI Armsraces
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Part III: Engineered System Security through AI Armsraces

CEADS system diagram
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Part III: Engineered System Security through AI Armsraces

CEADS CompCoEA operation
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Part III: Engineered System Security through AI Armsraces

Outcomes

Coevolving attacke and defender AI agents can produce three distinct
capabilities:
Attacks & Defenses Automated identification of vulnerabilities and

candidate mitigations that are already tested against a large
set of attacks.

Attack & Defense Strategies Automated wargaming in order to identify
high-consequence attack strategies and corresponding
defense strategies.

Attacker & Defender AI Agents Automated generation of highly-trained
AI agents that can be deployed in live systems to augment
human operators, or even autonomously engage in real-time
with adversaries, both human and AI.
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How to Apply CEADS to an Engineered System

Create simulacrum
Design representation for AI agent actions

Create AI controller logic including sensory inputs
Define attacker & defender fitness functions
Tune Competitive CoEA
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Part III: Engineered System Security through AI Armsraces

Challenges

Operationalization In order to achieve operationalization, the attack &
defense actions must be comprehensive and reflective of
current and future threats, and must model targeted
real-world systems with very high-fidelity requiring extensive
knowledge of the targeted systems and a process for testing
and eventually validating on said systems.

Scalability Running a single automated red & blue teaming exercise
employing adversarial AI agents can be quite computationally
expensive depending on the size of the modeled engineered
system and the fidelity to which it is being modeled. CoEAs
typically require on the order of thousands of red & blue
teaming exercises for a single experiment.
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Part III: Engineered System Security through AI Armsraces

Addressing Scalabillity
The following approaches can be pursued to address scalability:

Parallelization: CoEAs are embarrassingly parallel, so as long as the
hardware resources are available to execute multiple instances
simultaneously, a near linear speedup can be achieved.
Mixed Fidelity Execution: As long as low-fidelity models are within
reasonable bounds of high-fidelity models, very significant speedups
can be achieved by defaulting execution to low-fidelity models and
only re-executing the most promising AI agents at computationally
expensive high-fidelity. This is also known as surrogate modeling.

Partial Evaluations: By adding hooks into the simulacrum to query
and control it during execution, agents performing sufficiently poorly
can have their fitness estimated based on a partial evaluation, thus
saving precious computational time for evaluating more promising
agents. Additionally, poorly performing agents can be sampled at
lower rates than promising ones for additional time savings.
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Part III: Engineered System Security through AI Armsraces

Take Home Message

Modern engineered systems are extremely vulnerable to attacks
Adversarial AI applied to a high-fidelity simulacrum of the engineered
system may be able to automatically identify vulnerabilities and
corresponding mitigations

Appropriate configuring adversarial AI and creating high-fidelity
sumulacra requires human engineers
AI is not a panacea, but can augment human experts to significantly
improve results
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