

How Enterprises Use ML in Cybersecurity Operations

Song Luo

March 2024

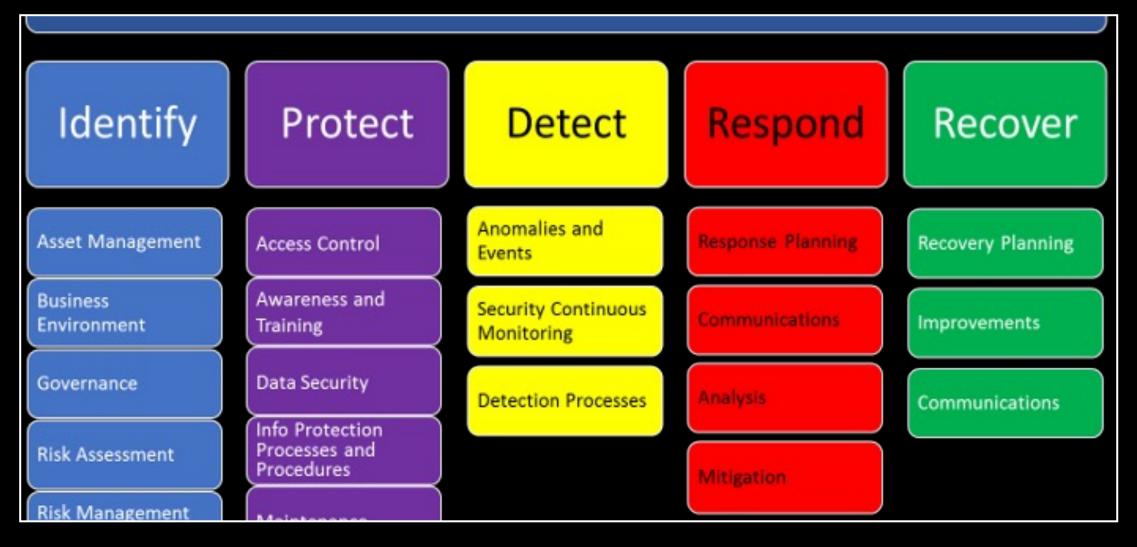
- My interest:
 - $\circ~$ Machine learning and AI
 - $\,\circ\,$ Security and Privacy
 - $\circ\,$ Coding and building
- My experiences :
 - Currently director of machine learning at Capital One
 - Led R&D teams in financial and tech industries
 - Focus on transforming advanced technologies into real values

.....

Cyber Team Responsibilities

Protection

Incident Response


Assessment and Audit

.

Policy Development

Compliance

Employee Education

NIST Cybersecurity framework

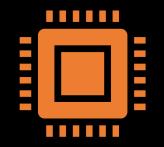
Typical use of machine learning in cybersecurity: A detection-centered approach

Purpose: directly identify potential threats before they escalate and cause significant damages

Examples:

 Virus and Malware detection with supervised classification and reinforcement learning

 \circ APT detection with graph theory


Anomaly detection with unsupervised learning

Advantages:

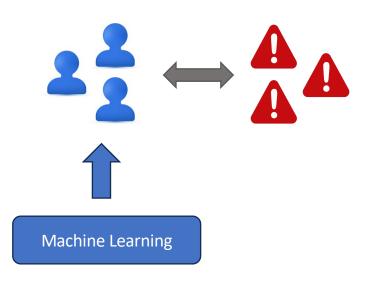
olt helps cybersecurity teams to be able to detect threats from large data sets, and sometimes be able to discover unknown threats

Use cases of detection-centered approach

Successful:

Detecting malicious URLs used by C&C Detecting malicious web content Detecting power shell commands used by virus and malwares

Not so successful:


Malware reverse engineering Automatic signature generation Malicious behavior detection using security logs

The challenges of detection-centered approach

- Challenges of ML in Threat Detection:
 - Scarcity of labeled data for training
 - Adversarial nature of cybersecurity
 - Rapidly evolving cyber threat landscape
 - Demand for explainable models
- Impact on ML results:
 - \circ $\;$ Low accuracy in threat detection
 - High rates of false positives
 - Sensitivity to data quality

Human-centered approach of applying ML

- Human-centered AI complements detectioncentered AI by enhancing human analysts' decision-making abilities.
- It provides insights and automations to allow focus on complex cybersecurity threats.
- Recognizes the irreplaceable value of human intuition and expertise in facing cybersecurity challenges.
- Fosters a collaborative dynamic between technology and human operators for more efficient threat handling.
- Maximizes the analytical capabilities and efficiency of cybersecurity teams by working alongside them.

Why humancentered approach now?

- Necessity:
 - We need more human intuition and expertise to deal with the everincreasing complexity of cybersecurity operations.

- Capability:
 - The capability of generative AI has reached to the degree that it can help human analysts on some cognitive tasks.

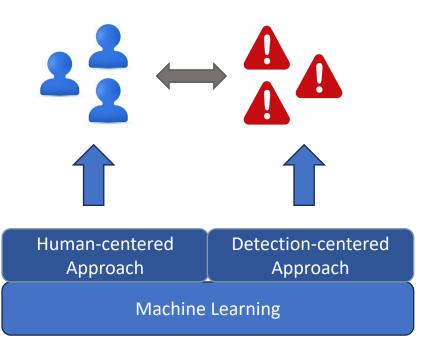
Use Case No. 1: Correlation for Anomaly Detection

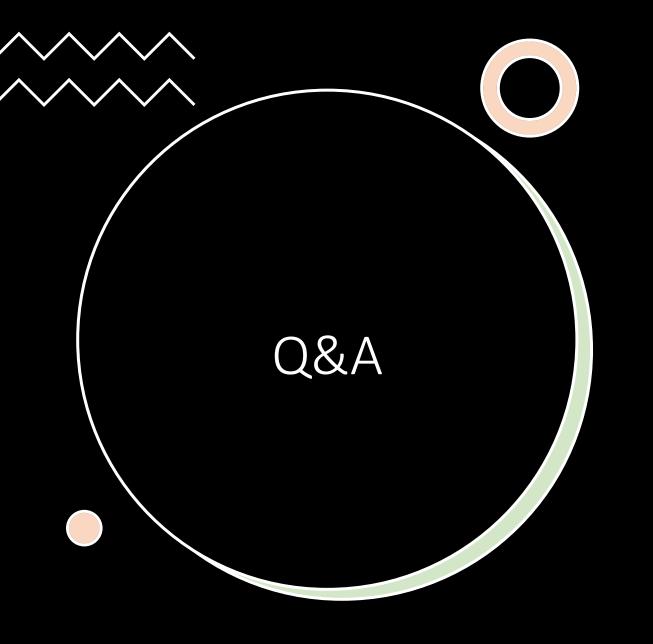
- Anomaly Detection in Cybersecurity:
 - Utilizes systems to identify abnormal activities in logs.
 - Targets anomalies caused by attacks or valid operations under unusual conditions.
 - Primarily operates on time series data from single sources (e.g., firewalls, endpoint protection software).
- Challenges with Anomaly Detection:
 - Difficulty in pinpointing root causes from a single data source.
 - Necessity to correlate alerts with additional data for comprehensive understanding.
- AI-Assisted Solution:
 - Understands the nature of the anomaly from event reports, including data source and statistical characteristics.
 - Identifies relevant additional data sources for context enrichment.
 - Automatically retrieves and consolidates data from these sources, generating insightful summaries.

Use Case no. 2: textto-detection with Al

- Text-to-Detection AI for Cybersecurity:
 - Automates the process of building new detection rules for emerging threats.
 - Reads and interprets cyber threat intelligence reports to understand new challenges.
 - Identifies necessary data sources for effective threat detection.
 - Generates and translates detection rules into query formats like SQL for testing.
- Positive Impacts:
 - Enhances speed and accuracy in developing detection rules.
 - Improves the cybersecurity team's ability to rapidly and accurately counter new threats.

Use Case no. 3: remediation for software vulnerabilities.


- Software Vulnerability Remediation AI Tool:
 - Identifies software vulnerabilities scanned by tools like Checkmarx.
 - Recommends remediation strategies by referencing similar, previously fixed cases.
 - Consumes and analyzes internal documentation on past vulnerability fixes.
- Positive Impact:
 - Provides specific remediation guidance to engineering teams lacking expertise.
 - Reduces the time taken to fix vulnerabilities by leveraging internal knowledge.
 - Minimizes false positives in vulnerability scanning, streamlining the development process.


Potential Challenges and Limitations of Using Generative Al

- Difficulty in understanding the context and nuances of cybersecurity incidents.
- Potential for bias and hallucinations in Algenerated recommendations.
- Challenges in integrating with existing cybersecurity tools and processes.

- Both human-centered and detection centered approaches are important for cybersecurity operations
- They complement to each other
- Human-centered approach may receive more attention in the near future
- Generative AI is expected to be used in both detection-centered and human-centered approaches, with cautions

/////