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Part I: Engineered Systems & Security

What is an Engineered System?

NSF’s Engineering Research Center website defines engineered systems as:

“a combination of components that work in synergy to collectively perform
a useful function. The engineered system could, for example, wholly or in
part constitute a new technology for a new product line a new
manufacturing process, a technology to improve the delivery of a service,
or an infrastructure system.”

Examples:
Modern Planes, Trains, and Automobiles
Industry 4.0: Chemical Plant, Biotechnology, Agriculture
Modern Utilities: Electric, Water, Gas, Oil
Satellite Constellations (e.g., Starlink)
Internet, Enterprise Computer Networks, Cloud Computing
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Part I: Engineered Systems & Security

Critical Infrastructure Sectors

DHS’ Cybersecurity and Infrastructure Security Agency (CISA) lists 16
critical infrastructure sectors:

Chemical
Commercial Facilities
Communications
Critical Manufacturing
Dams
Defense Industrial Base
Emergency Services
Energy
Financial Services

Food and Agriculture
Government Facilities
Healthcare and Public Health
Information Technology Sector
Nuclear Reactors, Materials,
and Waste
Transportation Systems
Water and Wastewater
Systems
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Part I: Engineered Systems & Security

The Problem

Modern engineered systems tend to be cyber/cyber-physical in nature
Cyber & Cyber-physical engineered systems are extremely vulnerable
to attack

Cyber & Cyber-physical engineered system attack surfaces tend to be
astronomically large and infeasible to fully secure
Only AI is capable of examining the combinatorially large number of
unique attacks and defenses on modern engineered systems
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Part I: Engineered Systems & Security

Engineered System Security as a Game

Two or more adversaries: one defender and one or more attackers
Attackers range from so-called “script-kiddies” to organized crime,
terrorist organizations, and adversarial nation states

Attacker goals are diverse
Defender needs to simulatenously defend against this wide variety of
attackers
Asymetric non-zero sum game
Game theory allows for mathematical analysis of adversarial models
Classic game theory does not scale to complex, real-world systems
Computational game theory achieves scalability by approximating
Nash equilibria
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Part II: AI Armsraces

Computational Problem Solving

Step 1: build abstract/computational model of the real-world
Step 2: solve computationally in abstract model

“Everything Should Be Made as Simple as Possible, But Not
Simpler”1

Step 3: map solution back to real-world

1https://quoteinvestigator.com/2011/05/13/einstein-simple/
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Part II: AI Armsraces

Terminology

Many computational problems can be formulated as
generate-and-test search problems
A search space contains the set of all possible solutions

A search space generator is complete if it can generate the entire
search space
An objective function tests the quality of a solution
A heuristic is a problem-dependent rule-of-thumb
A meta-heuristic is a general heuristic to determine the sampling
order over a search space with the goal to find a near-optimal solution
(or set of solutions)
A hyper-heuristic is a meta-heuristic for a space of programs
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Part II: AI Armsraces

Algorithmic Toolbox

A Black-Box Search Algorithm (BBSA) is a meta-heuristic which
iteratively generates trial solutions employing solely the information
gained from previous trial solutions, but no explicit problem knowledge
Evolutionary Algorithms (EAs) can be described as a class of
stochastic, population-based BBSAs inspired by Evolution Theory,
Genetics, and Population Dynamics
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Part II: AI Armsraces

Evolutionary Cycle
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Part II: AI Armsraces

Genetic Programming

EA with Hierarchical Representation for Model Identification
Koza style Tree GP is the most prevalent
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Part II: AI Armsraces

Genetic Programming - Mutation
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Part II: AI Armsraces

Genetic Programming - Mutation
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Part II: AI Armsraces

Genetic Programming - Recombination
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Part II: AI Armsraces Introduction to Coevolution

Real-World Game-Theoretic Problems

Game Theory: multi-agent problem with conflicting
utility functions
Real-world examples:
▶ economic & military strategy

▶ arms control
▶ auctions
▶ cyber security

Common problem: real-world games are typically
incomputable
Solution: Computational Game Theory
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Part II: AI Armsraces Introduction to Coevolution

Approximating Incomputable Games

Consider the space of each user’s actions
Perform local search in these spaces

Solution quality in one space is dependent on the
search in the other spaces
The simultaneous search of co-dependent spaces is
naturally modeled as an armsrace
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Part II: AI Armsraces Introduction to Coevolution

Classical Computational Solver Limitations

Complex real-world problems can be (practically)
unsolvable with classic approaches

Black box
“Ill-behaved” search space

Intractable
Evolution has a demonstrated ability to solve very
complex problems
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Part II: AI Armsraces Introduction to Coevolution

Coevolutionary Algorithm (CoEA)

CoEAs are a special type of EAs where the fitness of an
individual is dependent on other individuals (i.e.,
individuals are explicitly part of the environment)

Single species vs. multiple species

Cooperative vs. competitive coevolution
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Part II: AI Armsraces Introduction to Coevolution

Two-Population Competitive Coevolutionary Cycle
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Part III: Engineered System Security through AI Armsraces

CEADS system diagram
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Part III: Engineered System Security through AI Armsraces

CEADS CompCoEA operation
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Part III: Engineered System Security through AI Armsraces

Outcomes

Coevolving attacker and defender AI agents can produce three distinct
capabilities:
Attacks & Defenses Automated identification of vulnerabilities and

candidate mitigations that are already tested against a large
set of attacks.

Attack & Defense Strategies Automated wargaming in order to identify
high-consequence attack strategies and corresponding
defense strategies.

Attacker & Defender AI Agents Automated generation of highly-trained
AI agents that can be deployed in live systems to augment
human operators, or even autonomously engage in real-time
with adversaries, both human and AI.
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Part III: Engineered System Security through AI Armsraces

How to Apply CEADS to an Engineered System

Create simulacrum
Design representation for AI agent actions

Create AI controller logic including sensory inputs
Define attacker & defender fitness functions
Execute AI Armsrace
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