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Automated Design of Network Algorithms

Use automated heuristic search techniques to improve
off-the-shelf algorithm performance for specific
applications.
• Complex network applications typically rely on

approximation heuristics for efficiency
• These heuristics can be tailored to leverage

problem characteristics for an application to
improve accuracy, speed, etc.

• Doing this manually can be expensive and
time-consuming

• The optimization can be automated using
bio-inspired search techniques
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Automated Heuristic Optimization

• Extract functionality from related algorithms
to build a set of “algorithmic primitives”

• Construct entire algorithms from primitives
(e.g., parse tree)

• Measure algorithm quality based on the
application

• Use heuristic search algorithm (e.g., genetic
programming) to optimize algorithm structure
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Heuristic Search Scalability for Real-world Applications
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• Granularity level of primitive operations has a
huge impact on scalability

• Automated primitive granularity control can
help address scaling issues for heuristic
searches on complex real-world problems
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Application: Data-Driven Network Model Generation

• Automate the design of algorithms for generating random
networks with characteristics of interest
– Investigate network properties
– Make predictions
– Generate synthetic data

• Can be trained on a single or multi-objective definition of
graph quality:
– Similarity to sample networks
– Graph or application specific metrics
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Static Modeling: Reproducing Random Community Graphs

Actual Graph Granular Model Generation Naive Model Fitting

Similarity Granular Naive
Metric Mean σ Comparison Mean σ

Degree 0.436 0.075 < 0.458 0.055
Betweenness 0.209 0.105 < 0.320 0.126

PageRank 0.127 0.029 < 0.150 0.036
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Static Modeling: Random Community Network Generator
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Application: Data-Driven Dynamic Network Modeling

• Extends model generation to dynamic networks
• Generate algorithm that “updates” the network at each time step
• Learn to mimic target network behavior
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Dynamic Modeling: Dynamic Erdös-Rényi Model
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Dynamic Modeling: Example Generated Algorithm
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Dynamic Modeling: Real-World Enterprise Network Behavior

Model activity of Los Alamos National Laboratory (LANL) enterprise computer network
• User-computer authentication events
• NetFlow communication sessions between pairs of computers
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Application: Automated Network Security Metric Design

Attack Simulation

• Automated the design of network security metrics
for large networks

• Trained on real or simulated event data
• Simulated attacks using real LANL network data

LANL Authentication Dataset Details

Unique Users 10,044
Unique Computers 15,779
Unique (User, Computer) Pairs 124,020
Total Authentication Events 101,918,344
Average Daily Authentication Events 2,547,959
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Application: Automated Network Security Metric Design

Daily Authentication Events
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Application: Automated Network Security Metric Design
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Application: Tailored Anomaly Detection Heuristics

• Automated the design of novel link prediction heuristics for anomaly detection
• Link prediction: predict the existence of a relationship or rank relationships by

likelihood
• Relies on historical or contextual information
• Predictive performance can be optimized by tailoring for an application
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Tailored Link Prediction Heuristics: Experiment

• Data from the network at Los Alamos National Laboratory
– User-Process (UP), Computer-Process (CP), NetFlow (NF)

• Differentiate legitimate activity from anomalies
– Positive “new” links
– Randomly generated negative links

• Use heuristic to calculate scores for a set of input links
• Fitness: area under ROC curve (AUC)
• AUC ∈ [0, 1], maximized when positive and negative samples are clearly differentiated

by scores

UNCLASSIFIED | 16



UNCLASSIFIED

Results

Method Application

UP CP NF

NP 0.76963 0.74226 0.52967
TSVD 0.94186 0.90334 0.92936
TED 0.97478 0.97697 0.92390
NN 0.98725 0.98661 0.98836

GP-UP 0.99066 0.98718 0.98051
GP-CP 0.98897 0.98996 0.99090
GP-NF 0.98867 0.98874 0.99241
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Tailored Link Prediction: Generated Heuristic
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Tailored Link Prediction: Dynamic Granularity Control
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Application: Network Segmentation Algorithms

• Automate the segmentation of a network to limit adversarial traversal using stolen
credentials

• Reduce the size of connected components within the network by:
– Revoking a user’s access to a computer to remove a path
– Split a user into multiple accounts (different credentials)

• Minimize changes to reduce impact on user productivity
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Application: Network Segmentation Algorithms

Segmenting LANL network bipartite authentication graph (BAG)
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Application: Network Segmentation Algorithms

BAG Partitioning Results
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• 1-2 orders of magnitude lower user impact compared to traditional graph partitioning
• Significant reduction in network vulnerability to intrusion
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Application: Design of Network Segmentation Algorithms

Leverage heuristic search to automate the design and optimization of multi-level graph
partitioning algorithms that are tailored to specific applications
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Application: Design of Network Segmentation Algorithms

Target graph classes:
• Random graph models (Erdös-Rényi and Barabási-Albert)
• Los Alamos National Laboratory (LANL) authentication graphs

Barabási-Albert LANL network
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Network Segmentation: Dynamic Granularity Control
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Proposed Work: Automated Algorithm Design for Adversarial
Malware Analysis

Design and optimize novel algorithms for
detecting and classifying malicious software
• Machine-learning based malware

analyzers can be easy to defeat with
simple obfuscation methods

• Automate the design of both malware
analyzers and adversarial malware
generators

• Use competitive co-evolution to train
robust malware classifiers
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Proposed Work: Automated Algorithm Design for Adversarial
Malware Analysis
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Summary

Bio-inspired heuristic search techniques can be used to automate the design and
optimization of application-tailored algorithms. Demonstrated on:
• Complex network modeling, both static and dynamic
• Network segmentation
• Anomaly detection using link prediction
• Novel network security metrics
• Co-evolving attacker and defender strategies
• Proposed: Adversarial malware analysis

Questions?
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Dynamic Primitive Granularity Control: Motivation

• Conventionally, primitive operation set is decided a priori
• Proper construction of set is crucial to heuristic search
• Functionality can be implemented at different levels of abstraction or granularity
• Complex, high-level operations:

– Leverage more domain knowledge
– Improve early results
– Limit search flexibility to fine-tune

• Basic, low-level operations:
– Allow greater algorithmic expressiveness
– Dramatically increase search space
– Requires “reinventing the wheel”
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Dynamic Primitive Granularity Control: Approach

• Implement operations at multiple granularity levels
• Construct high-level “macro” primitives from basic operations
• Granularity level can be set dynamically throughout search
• Controls operations available to variation mechanics
• Macro primitives can be decomposed into basic components
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Dynamic Primitive Granularity Control: Example
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Dynamic Primitive Granularity Control

Dynamic Granularity Control Schemes:
StaticLow: low throughout evolution

StaticHigh: high throughout evolution
LowToHigh: low initially, change to high at midpoint
HighToLow: high initially, change to low at midpoint
Alternating: random initially, alternate on convergence

SelfAdaptive: self-adaptive granularity level
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Tailored Link Prediction: Dynamic Granularity Control

StaticLow StaticHigh
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Tailored Link Prediction: Dynamic Granularity Control

LowToHigh HighToLow

UNCLASSIFIED | 34



UNCLASSIFIED

Tailored Link Prediction: Dynamic Granularity Control

Alternating SelfAdaptive
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Tailored Link Prediction: Dynamic Granularity Control

Link Prediction Accuracy

Method Application

UP CP NF

Ensemble 0.98757 0.98734 0.9884
Best-UP ——– 0.97995 0.98133
Best-CP 0.98277 ——– 0.97816
Best-NF 0.98518 0.98098 ——–

StaticLow 0.97269 0.97005 0.9296
StaticHigh 0.975 0.97748 0.94082
LowToHigh 0.97428 0.97625 0.95065
HighToLow 0.98863 0.98835 0.9895
Alternating 0.9911 0.99019 0.98343

SelfAdaptive 0.98906 0.99106 0.99285
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Self-Adaptive Granularity Control for Network Segmentation

• Evolution of MLP
heuristics can be
improved using
dynamic primitive
granularity control

• Leverage self-adaptive
control scheme

• Target real-world
networks for
improving security
through segmentation
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Self-Adaptive Granularity Control for Network Segmentation

Authentication

Unique users 9,924
Unique computers 14,822
Unique user-computer pairs 106,693

NetFlow

Unique devices 60,185
Unique communication pairs 1,136,854

• Segmenting Authentication graphs revokes user-computer access to limit traversal of
insider or intruder with stolen credentials

• Segmenting NetFlow graphs identifies low-cost plans for separating network domains
or placing intrusion detection monitors
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Self-Adaptive Granularity Control for Network Segmentation
Example Heuristic Evolved for NetFlow Application
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