
Assignment Series 2: Fuzzing

Drew Springall & Daniel Tauritz

April 4, 2024

1 Introduction

Fuzzing is a general approach which seeks to identify implementation errors in
code that parses untrusted input through automated evaluation of inputs called
fuzzing. Though many approaches exist, three are: blackbox random fuzzing,
whitebox constraint-based fuzzing, and grammar-based fuzzing [“Learn&Fuzz:
Machine Learning for Input Fuzzing” by Microsoft Research & The Technion].
AI holds the promise of improving fuzz-based approaches by intelligently gen-
erating test case inputs based on previously generated inputs and the imple-
mentations’ behavior when handling those inputs. This assignment series has
you work-through the process of applying AI techniques to fuzzing approaches
with your group but with a twist. Instead of searching for a single program
crash, your goal will be to find the best performing set of fuzzing inputs (i.e.,
input strings) based on a set of pre-existing implementations. Your collaborative
implementation should optimize for:

1. Maximize the number of available implementations that crash/error due
to one or more of your chosen inputs

2. Maximize the number of different crash/error types raised across all im-
plementations and all inputs

3. Minimize the number of inputs required to trigger the above crashes/errors
as well as the number of characters in each of those inputs

To be clear, finding bugs/misbehaviors in the various implementations is
not the primary goal. You are explicitly optimizing for the three elements
above in order to find the “best” set of inputs for fuzzing that data format.
Imagine there is a singular, never-before-seen deserialization implementation
which you wish to identify bugs in. If you find a bug, you are given a large
cash prize but every input you test requires that you pay $1,500 in order for
it to be evaluated. Instead of spending many millions of dollars to fuzz-test
this implementation via the traditional approach, you want to find the inputs
with the highest likelihood of identifying a bug based on functionally identical
implementations that require you to pay $0 in order to evaluate an input.

1

2 Submission Instructions

For each of the assignments described in the following sections, each group’s
coordinator should email Drs. Springall and Tauritz, with CC to the other
members of the group, a zip file containing their Python code and report, by
the deadlines as described next.

The deadline for Assignment 2c is 10:00 PM on Friday April 26, 2024. The
deadline for Assignment 2b must be at least four days before Assignment 2c.
The deadline for Assignment 2a must be at least four days before Assignment
2b. Each group’s coordinator must email Drs. Springall and Tauritz as soon
as possible, but no later than 1:00 PM on Monday April 8, with their group’s
deadlines for Assignment 2a and Assignment 2b.

3 Assignment 2a: Random Search

Tasks:

• Design and implement the software pipeline in order to efficiently evaluate
an input and observe each deserialization implementation’s behavior.

• Implement a random search which generates and evaluates random fuzzing
sets consisting of fifty inputs for a user-specified number of times, and logs
sufficient data to feed the fitness function and plot to show the performance

• Write a short report which describes your design, implementation, and
results; includes an iteration versus average fitness stair step graph; and
lists the best performing set found according to your fitness function.

4 Assignment 2b: Hill Climbing Search

Tasks:

• Improve your fitness function to better capture the three stated objectives
and allow the user to indicate their relative weights.

• Design and implement a mutation operator to impose a neighborhood
structure on the search space and perform local search.

• Implement a hill climbing search appropriate for your neighborhood struc-
ture to search the space of fuzzing sets with user-defined upper bounds
on the number/size of inputs. For your report, use a user-defined value of
up to fifty (50) inputs in a set and no more than 150 characters per input
string. This is in order to improve coverage of your matrix in response to
results of Assignment 2a.

• Run experiments to investigate your design and compare it to random
search with the new fuzzing set constraints (i.e., comparing to Assignment
2a).

2

• Write a report which describes your design, implementation, experimen-
tation, results, statistical analysis, and discusses your findings. Include
appropriate graphs and tables. Also include the top fuzzing input sets
you found and discuss them.

5 Assignment 2c: Evolutionary Computation

Tasks:

• Improve as appropriate your fitness function to better capture the two
stated objectives and allow the user to indicate the relative weights indi-
cating the trade-offs between those objectives.

• Reuse from Assignment 2b with improvements as appropriate, your mu-
tation operator to induce a useful neighborhood structure on the search
space for performing evolutionary computation.

• Design a recombination operator which takes as input two fuzzing input
sets and produces as output one fuzzing input set which inherits genes
(and hence traits) of the two input sets (i.e., combines two sets into one
set).

• Implement an appropriate evolutionary algorithm (EA) to search the space
of fuzzing sets with user-defined upper bounds on the number of inputs
in each set and the total size in characters. For your report, use a user-
defined value of up to fifty (50) inputs in each set and no more than 150
characters per input string. This is in order to facilitate comparison with
your previous Hill Climbing Search. You can either implement your EA
from scratch, or employ an existing implementation, such as for instance
provided by the following two libraries:

– DEAP [https://github.com/DEAP/deap]

– jMetalPy [https://github.com/jMetal/jMetalPy]

• Run experiments to investigate your design and compare it to both Ran-
dom Search and Hill Climbing Search (i.e., comparing to the results of
both those searches as performed for Assignment 2b).

• Remember the $1,500 per fuzzing input in the real-world: $75,000 signif-
icantly cuts into your large-cash prize (potentially exceeding it). Figure
out how to configure your EA to bias optimization towards small input
sizes (e.g., five).

• Write a report which describes your design, implementation, experimen-
tation, results, statistical analysis, and discusses your findings. Include
appropriate graphs and tables. Also include the top fuzzing input sets
you found, as well as the small biased input size, and discuss them.

3

https://github.com/DEAP/deap
https://github.com/jMetal/jMetalPy

